
Embedded vision-based localization and model predictive control

for autonomous exploration

Hélène Roggeman, Julien Marzat, Martial Sanfourche, Aurélien Plyer

Abstract— This paper presents a complete mobile robot
architecture for autonomous exploration in a GPS-denied un-
known environment. The platform considered is equipped with
wheel encoders, stereo-vision and depth sensors, the measure-
ments of which are fused within an extended Kalman filter
for robust localization. An occupancy grid of the environment
is built on-line for environment reconstruction and obstacle
detection. Based on this map, a model predictive control scheme
autonomously defines safe exploration trajectories, while taking
into account interaction with the imaging sensors. Experimental
results demonstrate the embedded computational capability of
this vision-based control loop.

Index Terms— autonomous robot, exploration, model predic-
tive control, robust estimation, visual odometry

I. INTRODUCTION

Autonomous robots are interesting contenders to carry
out surveillance and exploration missions in unknown or
dangerous environments. The algorithms embedded on these
platforms should be able to simultaneously achieve mapping,
localization, trajectory definition and control. Much research
has been conducted on mobile robots equipped with either
global localization sensors (GPS, Vicon systems) or relative
ones such as a laser range finder, which is expensive and
consumes a lot of energy. An alternative choice is to rely
mainly on visual sensors, since recent progress in embedded
computational capabilities now allows fast image processing
and three-dimensional environment modeling. Such a vision-
based architecture has been shown to be practical on a Micro
Air Vehicle for an exploration mission in [1].
Vision-based ego-localization has reached a high level of

maturity in the last decade with many applications in aerial
robotics or mobile robotics. From a methodological point
of view, two approaches are often opposed despite recent
convergent trends: Visual Odometry (VO) ans V-SLAM
(Visual Simultaneous Localization and Mapping). Basically,
VO estimates the relative motion of the camera between two
successive images [2], [3] (monocular, stereo or depth image)
while V-SLAM resolves the global localization problem by
building a globally-consistent maps of the environment [4],
[5]. However, in a recent movement of convergence, VO
algorithms tend to be like V-SLAM algorithms which the
constraint of globally consistent would be released. For a
more detailed review, we advise the reading of the recent
two-parts tutorial of D. Scaramuzza and F. Fraundorfer [6],
[7].

H. Roggeman, J. Marzat, M. Sanfourche, A. Plyer are with ON-
ERA – The French Aerospace Lab, F-91123 Palaiseau, France, first-
name.lastname@onera.fr

Model Predictive Control (MPC) is an appealing control
strategy to build and follow trajectories in unknown envi-
ronments. It uses a dynamical model of a system to predict
its future state on a time horizon. Using this prediction, a
possibly multi-modal performance criterion is optimized at
each timestep for computing control inputs that achieve the
required goals [8]. Unlike most path planning methods, this
scheme is able to take into account an accurate system model
as well as environment changes, since new control inputs are
computed on the basis of measurements acquired in real time.
This is why it has been used in a few recent works dealing
with exploration by mobile robots [9]–[12].
This paper details an embedded vision-based MPC cou-

pled loop to address autonomous exploration of an unknown
area by a mobile robot (see model in Section II), with obsta-
cle avoidance. The algorithmic architecture is presented in
Figure 1. The visual odometry algorithm (eVO) is described
in Section III-A, an EKF filter for fusion of wheel and visual
odometries in Section III-B and the environment mapping
strategy in Section IV. The MPC autonomous guidance
scheme is explained in Section V and experimental results
are reported in Section VI.

II. ROBOT ARCHITECTURE AND MODEL

The experimental platform considered is a four-wheel
Robotnik Summit XL (Figure 2) equipped with a Kinect
sensor and a stereo rig composed of two electronically
synchronized USB cameras separated by a 18cm long base-
line equipped with 5.5mm S-mount lens. The cameras are
configured to capture VGA frames at 20Hz. The stereo image
flow is processed to estimate the robot trajectory and to
provide depth maps in outdoor environments while Kinect
gives depth maps in indoor environment. These sensors
are linked to an embedded PC with an Intel quad-core i7
processor and a Nvidia GPU (GT640) in charge of data
processing.
The state vector for this system is x = [x, y, θ]

T , where
(x, y) is the robot position and θ its heading angle. The
control input vector is u = [v, ω]

T , where v is the robot
linear speed and ω its angular speed. These are related to
the controlled rotation speeds of the wheels by

{
v = r

2
(ωl + ωr)

ω = r
2L

(ωr − ωl)
(1)

where L is the half-axis length and r the wheel radius. The
discrete-time dynamical model xk = f (xk−1,uk−1) can be

IROS Workshop on Visual Control of Mobile Robots (ViCoMoR 2014)
September 18, 2014, Chicago, Illinois, USA

13

stereo

depth sensor

wheel encoders

EKF

ground lter octomap

MPC
Robot

controller

global planner

eVOimages

3D points 3D points

pose

pose

pose

map

global

plan

start point

goal point

obstacle map

command

eFolki
images

depthmap

3D points

sensor switch

Fig. 1. Algorithmic architecture

written as

xk = xk−1 + tevk−1 cos θk−1

yk = yk−1 + tevk−1 sin θk−1

θk = θk−1 + teωk−1

(2)

where te is the sampling period.

Fig. 2. Our mobile robotic platform equipped with two visual sensors (see
text).

III. VISION-BASED LOCALIZATION

A. Stereo Visual SLAM

Estimating the robot trajectory from its starting point relies
on a stereo visual SLAM algorithm, called eVO [13]. Visual
SLAM addresses the problem of ego-localization through the
construction of a consistent map of the environment without
prior information. Here we consider a map built from a
limited number of 3D points located in a common frame
defined as the robot frame at its starting point. Thanks to
the calibrated stereo setup, the scale factor is known and the
depth of landmarks in the sensor frame is measurable in a
limited range (around 10 meters).
As in [5], the implemented algorithm is based on two tasks

working in parallel: mapping and localization.
The mapping task consists in localizing new landmarks

and discarding those which have gone out of sight. Except

Fig. 3. Robot motion model.

for the first stereo pair used to initialize the map, this
operation is executed on-demand when the ratio of visible
landmarks over the number of landmarks stored in the map
falls below a threshold. The stereo pairs used to update the
map are called keyframes. In practice, for each keyframe,
a few hundred of Harris [14] or FAST [15] corners are
extracted in the left image then matched by a coarse-to-fine
exhaustive search along the epipolar lines. The relative-to-
sensor localization of the novel landmarks is easily deduced
from the disparity value. In order to be stored in the map, the
landmarks are localized in the reference frame by applying
the transformation corresponding to the current robot pose.
In contrast to [1], [5], [16], the multiview refinement assuring
a more precise landmark localization, inherent to SLAM
techniques, were bypassed for computational reasons linked
to the limited computational power of the original target
robot. The map is then a collection of 3D points localized
from a limited number of points of view. As shown on
practical examples in [13], this scheme limits the estimation
drift compared to standard dead-reckoning visual odometry
techniques and delivers a pose at higher frequency. This
operation takes approximately 20 ms on the embedded PC.
The localization task exploits unambiguous matchings

between landmarks stored in the map and image features.
These 2D-3D matchings are initialized during the mapping
operation, then they are propagated along the visible land-
mark by tracking image features with KLT [14]. The full
6-degree-of-freedom pose (position and attitude) is deduced

14

from a two-steps procedure: the initial pose is estimated with
the P3P algorithm using a RANSAC procedure [17], [18],
which is then refined by minimizing the reprojection error
of inlier matches selected by RANSAC. This task is carried
out by considering only the left image. This operation is very
fast (less than 10ms on the embedded PC).
This algorithm was benchmarked one year ago on the

KITTI datasets [19], where it ranked first at the time of
the submission. The measured drift on various sequences
(KITTI or MAV) varies between 1% and 2% of the trajectory
length. In some intricate situation - the observed scene
lacks of texture or when the robot navigates in highly
dynamic environments-, the estimated trajectory can sud-
denly differ largely from the true trajectory. The proposed
countermeasure consists in fusing by an EKF the pose
parameters corresponding to a planar motion, denoted by
yevo = [xevo, yevo, θevo]

T in what follows, with measure-
ments coming from the wheel encoders.

B. EKF sensor fusion with outlier detection

As in [20], an extended Kalman filter (EKF) is used to
cope with the nonlinear dynamical model (2). It provides
an estimated state x̂ and its associated covariance matrix
P through the fusion of wheel encoders and stereovision
measurements. It also allows outlier detection if the vision-
based system faces momentarily an unstructured scene.
The estimated vehicle input vector, denoted by

û = [v̂, ω̂]T, can be computed from the wheel encoder
measurements (averaged between the two wheels of each
side) using (1). The prediction step of the filter based on
this input information is thus equivalent to classical wheel
odometry

x̂k|k−1 = f
(
x̂k−1|k−1, ûk−1

)
(3)

The EKF framework also makes it possible to take into
account the uncertainty related to wheel odometry (mostly
due to wheel slip) in the input covariance noise matrix

Qk =

[
σ2
v(k) 0
0 σ2

ω(k)

]
(4)

The noise variances σ2
v and σ2

ω can be chosen either constant
or proportional to the squared angular speeds of the wheels,
since a larger error is to be expected with higher rates. The
propagation of the state covariance is achieved by

Pk|k−1 = Fk−1Pk−1|k−1F
T
k−1 +Gk−1Qk−1G

T
k−1 (5)

where

Fk−1 =
∂f (x,u)

∂x

∣∣∣∣
x̂k−1|k−1,ûk−1

(6)

Gk−1 =
∂f (x,u)

∂u

∣∣∣∣
x̂k−1|k−1,ûk−1

(7)

In the case of model (2), these matrices are equal to

Fk−1 =

1 0 −tev̂k−1 sin θ̂k−1

0 1 tev̂k−1 cos θ̂k−1

0 0 1

 (8)

Gk−1 =

te cos θ̂k−1 0

te sin θ̂k−1 0
0 te

 (9)

The correction step of the EKF uses the visual odometry
measurements yevo

k = [xevo
k , yevok , θevok]

T, such that the
innovation is equal to

rk = yevo
k − x̂k|k−1 (10)

and its covariance is

Sk = Pk|k−1 +Rk (11)

where Rk = diag
(
σ2
x, σ

2
y, σ

2
θ

)
, with noise variances related

to the accuracy of eVO mentioned in Section III-A.
Finally, the updated state and covariance are

x̂k|k = x̂k|k−1 +Pk|k−1S
−1
k rk (12)

Pk|k =
(
I3 −Pk|k−1S

−1
k

)
Pk|k−1 (13)

The vision-based system may generate large localization
errors if the scene is not structured enough (e.g., a plain wall).
If undetected, this may cause the output of the EKF to be
erroneous and as a consequence endanger the robot mission
and safety. Following sensor fault diagnosis techniques, a ro-
bust outlier detection scheme is considered by monitoring the
innovation (10). If it exceeds some threshold ǫr, which can
be selected proportional to the innovation covariance (11),
then only the prediction step is keeped as the state estimate
(i.e., classical wheel odometry). The visual odometry system
is then re-initialized at each timestep with the new predicted
state, until the innovation falls below the threshold. The filter
then proceeds back to the update step.

Algorithm 1 Robust EKF
At each timestep k

1) Compute ûk−1 from wheel encoders
2) Predict x̂k|k−1 and Pk|k−1 using (3) and (4)
3) Using stereovision measurements yevo

k , Compute the
innovation using (10) and (11)

4) if rk > ǫr

Use x̂k|k−1 as the estimated state and reset eVO
else

Compute the update x̂k|k and Pk|k from (12) and (13)
5) Go back to 1 with k ← k + 1

The behavior of the EKF is illustrated in Figure 4 on
real data. It can be seen that the filter successfully rejects
visual odometry outliers due to the unstructured scene (see
detection signal in Figure 5) and also corrects the drift of
wheel odometry when visual information is available.

IV. ONLINE ENVIRONMENT MAPPING

Online environment mapping consists in aggregating 3D
measurements, in particular depthmaps, in a global model
thanks to the poses estimated by the EKF previously de-
scribed. Two kinds of depthmap are considered here : those
captured by the depth active camera end those calculated
from stereo pair by the dense optical flow algorithm called
eFolki [21].

15

Fig. 4. Robust EKF sensor fusion (grid step size 1m)

Fig. 5. Outlier detection via the innovation signal

A. Dense stereo-matching

eFolki is an evolution of the standard Lucas-Kanade [22]
optical flow algorithm. Like for the dense LK algorithm, the
basic problem is to register local windows centred around
each image pixel x by minimizing a SSD (Sum of Squared
Difference) criterion over a 2D motion vector u(x):

∑

x′

w(x′ − x) (I1(x
′)− I2(x

′ + u(x)))
2
, (14)

where w is a separable weighting function, uniform or
Gaussian, of limited support W , typically a square window
parametrized by its radius r. The minimization of the cri-
terion (14) is done by iterative Gauss-Newton coarse-to-fine
pyramidal strategy as in a classical implementation of LK.
However, using the first order expansion described in [23], an
iteration can be completed with only one image interpolation
per pixel, while the well-known PyramiLK algorithm [24]
requires several image interpolations by pixel. The resulting
code is remarkably fast on massively parallel architecture
such as GPU.
The motion estimation greatly depends on the local image

texture and fails in case of illumination changes. So, to
achieve a high level of robustness in real-world environment,
eFolki uses a Rank Transform [25] applied to the images
before SSD minimization. In practice, the motion estimation
in low texture areas is more noisy but the motion estimation
stays convergent.

B. Multisensor occupancy grid

The default device is the depth active camera. However, in
many situations especially outdoor, the depthmaps delivered
by this sensor are incomplete or even empty. So, a mecha-
nism based on the density of depthmaps acquired by active
camera permits to switch automatically from active camera
to passive stereorig.
The 3D point clouds output by this "sensor switch"

(see figure 1) are then individually filtered for removing
the ground plane thanks to a RANSAC-based search al-
gorithm [26]. A prior is used to find the plane whose the
perpendicular angle is near vertical.The result is then inserted
in an Octomap model [27].
Octomap is a well-known implementation of a volumetric

occupancy grid using an octree data structure. Each element
of this data structure contains two probabilities, the occu-
pancy one and the free one. These quantities are updated by
a ray-tracing technique emulating a depth sensor: the ray be-
tween the sensor and a 3D point uprise the free probability of
intersected voxels while the end-point uprise the occupancy
probabilty of its corresponding voxel. Using octree offers
a very efficient memory structure but the update strategy
is very computationally intensive. Only low framerate (near
1Hz) are available due to this limitation.
After the Octomap update, we project the map in a three

state 2D map : {unexplored, free, occupied}, and use it for
autonomous guidance.

V. GUIDANCE FOR AUTONOMOUS VISION-BASED
EXPLORATION

Model Predictive Control (MPC) is a usual method for the
guidance of autonomous vehicles in complex environments,
taking into account differential constraints [28]. Convergence
results for this receding horizon strategy can be found in [29].

A. MPC principles

Considering the current robot position xk, a sequence
Uk of Hc control inputs is defined as well as the resulting
sequence Xk of Hp predicted states using model (2).

Uk = {uk,uk+1, . . . ,uk+Hc−1} (15)

Xk =
{
xk+1,xk+2, . . . ,xk+Hp

}
(16)

Finite control horizon Hc and prediction horizon Hp are
considered for tractability. If Hc < Hp, control inputs at
timesteps larger thanHc should be considered either constant
(for linear speed) or null (for angular speed). Each control
input vector uk is bounded within the compact set U as

−vmax < vk < vmax

−ωmax < ωk < ωmax
(17)

and thus Uk ∈ U
Hc . A cost function J (Uk,Xk) should be

defined to quantify the mission requirements and constraints.
The following optimization problem is then solved at each
timestep k to find the optimal control sequence.

U∗k = arg min
Uk∈UHc

J (Uk,Xk)

with xi satisfying (2),
∀i ∈ [k + 1; k +Hp]

(18)

16

The first component u∗k of this sequence is then applied on
the robot and the procedure is repeated at the next timestep
using the new information gathered in the motion.

B. MPC costs

The main cost function is defined as

J = wobsJobs + wuJu + wexpl

(
beJexpl + beJnav

)
(19)

where

• Jobs is the obstacle avoidance cost,
• Ju regulates the linear and angular speeds,
• Jexpl is the exploration cost,
• Jnav the waypoint navigation cost.

Ju and Jobs are always active, while Jexpl and Jnav corre-
spond to separate mission phases and will never be active
simultaneously: be is a boolean which is equal to 1 when
exploration is active and to 0 when the robot should switch
to waypoint navigation.
As detailed in what follows, the sub-costs J• are all of

unit norm. The weights w• should be chosen to reflect their
relative importance (see Section VI).
1) Obstacle avoidance: The obstacle avoidance cost pe-

nalizes the intersection of each predicted position in Xk

with existing obstacles in the current occupancy grid. A
morphological Euclidean distance transform is applied on the
occupancy grid to obtain a distance map. This computation
needs only to be performed on the area which can be reached
by the vehicle on the prediction horizon, starting from its
current position. The user-defined borders of the zone to be
explored are also considered as obstacles.
Based on the map containing the distance of any vehicle

position to the nearest obstacle, the following penalty func-
tion [30] is considered

fo (xk) =
1− tanh (α (do (xk)− β))

2
(20)

α =
6

ddes − dsec
(21)

β =
1

2
(ddes + dsec) (22)

where

• do (xk) is the distance between the vehicle position at
time k and the nearest obstacle.

• ddes is a desired distance to obstacles, beyond which
they are ignored.

• dsec is a safety distance that must not be reached by the
vehicle, leading to full penalty.

The continuous function fo is designed to be equal to 1 when
do < dsec and to zero for do > ddes (Figure 6). The obstacle
avoidance cost is computed as

Jobs =
1

Hp

k+Hp∑

i=k+1

fo (xi) . (23)

Fig. 6. Penalty function for obstacle avoidance

2) Control cost: Ju encompasses the regulation of the
sequence of linear speeds to a nominal value v0 (possibly
negative) and penalization of large angular speeds, on the
control horizon.

Ju =
1

2Hc

Hc−1∑

i=k

(

ω2
i

ω2
max

+
wv (vi − v0)

2

(‖v0‖+ ‖vmax‖)
2

)

(24)

3) Vision-based exploration: The objective of the explo-
ration mission is to maximize the area seen during the
mission, within user-defined borders, while avoiding already
explored locations to reduce the duration of the mission [12].
The definition of an exploration trajectory is tightly coupled
with the characteristics of the embedded sensor: here, the
vision sensor has a triangular field of view with the same
heading angle as the vehicle (see Figure 7).

(a) (b)

(c) (d)

Fig. 7. Area explored (in black) for a sample trajectory (in green)

A copy of the occupancy grid is considered for recording
exploration progress, obstacles being considered as explored
boxes. The explored grid at timestep k is denoted by G(k),
discretized with a uniform spatial step dgrid and of dimen-
sions l × h (which could be limited to the area that can be

17

reached by the vehicle on the prediction horizon). Each of
its components gi,j(k) takes the value 1 if the corresponding
location has been explored and 0 otherwise, i and j being
the grid coordinates.
For any predicted trajectory corresponding to a control

input sequence Uk, the best exploration cost should be the
one that favors the highest number of unexplored locations.
To update the exploration grid, the intersection between its
cells and the sensor field of view at each predicted position
is computed by applying a contour detection algorithm (Bre-
senham line drawing) followed by a morphological closing
operation on the predicted sequence (see Figure 8). The grid
situation updated with a given predicted trajectory until time
k +Hp is denoted by G(k +Hp). The exploration cost to
be minimized (and thus negative) is then

Jexpl =
d2grid

HpAfov

l
∑

i=1

h
∑

j=1

[gi,j(k)− gi,j(k +Hp)] (25)

where Afov is the area of the sensor field of view.

(a) Two prediction steps

(b) Area covered on the prediction horizon

Fig. 8. Morphological operations for prediction of explored area, taking
into account the sensor field of view

4) Navigation: The following cost is built to reach a
waypoint pw, given the predicted positions of the robot
pi = [xi, yi]

T,

Jnav =
1

Hpvmaxte

k+Hp
∑

i=k+1

‖pw − pi‖
2 (26)

If the waypoint is unreachable by the vehicle on the pre-
diction horizon with the obstacle-free trajectory of minimal
cost, i.e., ‖pw − pk+Hp

‖ > ǫd with ǫd a small distance
threshold, then a grid-based A* path is computed and the
waypoint pw is re-assigned to the farthest reachable point
on this roughly planned trajectory. Another solution could
consist in increasing the size of the prediction horizon to
compensate for the observed distance to the waypoint.

C. Mission supervision

The MPC strategy is able to govern the exploration mis-
sion and obstacle avoidance within the reach of the prediction
horizon. For large maps where the distance covered during
the prediction horizon is much smaller than the size of
the user-defined map to explore, a higher layer supervision
process is defined.
Detection of mission ending is achieved by assessing

whether the MPC cost is similar for all predicted trajectories
and the optimization process results in null control inputs on
successive timesteps. In this case, if there remains unexplored
areas in the exploration grid, the robot switches to waypoint
navigation to reach the nearest such location. Once it is
reached, exploration resumes. If the entire map has been
explored, then the starting point is designated as a waypoint
and the mission ends when it is reached.

VI. EXPERIMENTS

A. MPC implementation

As in [30], the same control input is applied on all
the control horizon for computational tractability, thus the
optimization problem (18) has only two variables to find, v∗

and ω∗, and ∀i ∈ [k; k+Hc− 1], u∗i = [v∗, ω∗]
T. For steps

between Hc and Hp, the linear speed remains equal to v∗

while the angular speed is set to zero. Tuning parameters of
the EKF and MPC algorithms are indicated in Table I.

TABLE I

MPC AND EKF PARAMETERS

wobs = 40 te = 0.25s (MPC) v0/max = 0.6m/s σ
2
v = 10

−2

wu = 1 te = 0.05s (EKF) ωmax = 0.6rad/s σ
2
ω = 10

−2

wv = 5 Hc = 10 dgrid = 0.2m σ
2
x/y

= 10
−2

wexpl = 15 Hp = 20 Afov = 4.5m2
σ
2
θ = 10

−3

The deterministic global optimization algorithm DI-
RECT [31] was used for solving (18), using the nlopt

package. This strategy was always able to find a result in
less than 0.1s on the embedded computer, which compares
favorably with the duration of the MPC timestep.

B. Preliminary Experimental results

We have experimented the proposed system in the parking
of our research center. The mission consists in exploring an
squared area of 15m× 15m.
In a first step, we have validated the control functions

by using only he wheel encoders. The figure 9 shows the
mission progress at 4 different moments when :

• the robot goes behind an obstacle (subfigures (a) and
(b)).

• the robot is blocked by an environment element (sub-
figure (c)). ;

• the robot selects a waypoint and switches to waypoint
navigation. The waypoint is depicted by the pink point
(subfigure (d)).

• the robot stops the mission (subfigure (e)).

18

(a) Exploration behind the obstacle

(b) Exploration behind the obstacle (c) Robot is blocked

(d) Switch to waypoint navigation (e) End of the mission

Fig. 9. Progress of the parking exploration at 4 different moments (Screenshot from Ros Rviz). Here, the robot localization uses only the wheel encoders.

In a second time, the robot trajectory is estimated by
Visual-SLAM. The preliminary results are shown in figure
10 are equivalent to the ones obtained by wheel-odometer.
In a second time, the robot trajectory is estimated by Visual-
SLAM. The preliminary results are shown in figure 3 are
equivalent to the ones obtained by wheel-odometer. The
comparison of the second screenshot with the third one
highlights a limited drift. This can be explained by a too
small angular error between vision-based estimation and
gyrometer-based prediction for being recovered by EFK.

VII. CONCLUSIONS AND PERSPECTIVES

A vision-based algorithmic architecture to tackle fully
autonomous exploration missions with a mobile robot has
been presented. It relies only on measurements coming from
visual sensors and wheel encoders, which are fused in an
EKF. The resulting state estimate is combined with visual
information to build a map of the environment, which is
exploited by a MPC scheme to define trajectories favouring

unexplored locations without obstacle collision.
Preliminary experimental results have highlighted the in-

terest of the approach and its fully embedded capabilities.
There is room for improvement in the vision, mapping and
control algorithms, which will receive further attention in the
future.
In particular, the precision of the stereo visual SLAM

could be improved by fusing with the IMU sensor and by
updating the landmarks localization in a multi-view refine-
ment strategy. In parallel, we are working on the environment
model to increase the update rate of the 3D model.
The interaction between the visual sensors and trajectory

definition could be further enhanced by selecting control
inputs that lead to areas where vision-based localization
would not be endangered, while here the sensor field of view
was only taken into account for exploration purpose.

REFERENCES

[1] F. Fraundorfer, L. Heng, D. Honegger, G. H. Lee, L. Meier, P. Tan-
skanen, and M. Pollefeys, “Vision-based autonomous mapping and

19

(a) (b) (c)

Fig. 10. Progress of the parking exploration at 3 different moments (Screenshot from Ros Rviz) with robot trajectory estimated by vision.

exploration using a quadrotor MAV,” in Proceedings of the IEEE/RSJ

International Conference on Intelligent Robots and Systems, Vilam-

oura, Portugal, 2012, pp. 4557–4564.
[2] A. Mallet, S. Lacroix, and L. Gallo, “Position estimation in outdoor

environments using pixel tracking and stereovision,” in IEEE ICRA,
vol. 4, San Francisco, USA, April 24-28 2000, pp. 3519–3524.

[3] A. Howard, “Real-time stereo visual odometry for autonomous ground
vehicles,” in IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), 2008, pp. 3946–3952.
[4] A. Davison, I. Reid, N. Molton, and O. Stasse, “Monoslam: Real-

time single camera slam,” IEEE Transactions on Pattern Analysis and

Machine Intelligence (TPAMI), vol. 29, no. 6, pp. 1052–1067, 2007.
[5] G. Klein and D. Murray, “Parallel tracking and mapping for small

AR workspaces,” in Proceedings of the International Symposium on

Mixed and Augmented Reality, Nara, Japan, 2007, pp. 225–234.
[6] D. Scaramuzza and F. Fraundorfer, “Visual odometry: Part i - the first

30 years and fundamentals,” IEEE Robotics and Automation Magazine,
vol. 18, no. 4, pp. 80–92, December 2011.

[7] F. Fraundorfer and D. Scaramuzza, “Visual odometry: Part ii - match-
ing, robustness, and applications,” IEEE Robotics and Automation

Magazine, vol. 19, no. 2, pp. 78–90, June 2012.
[8] R. Findeisen, L. Imsland, F. Allgower, and B. A. Foss, “State and

output feedback nonlinear model predictive control: An overview,”
European Journal of Control, vol. 9, no. 2-3, pp. 190–206, 2003.

[9] C. Leung, S. Huang, and G. Dissanayake, “Active SLAM using model
predictive control and attractor based exploration,” in Proceedings

of the IEEE/RSJ International Conference on Intelligent Robots and

Systems, Beijing, China, 2006, pp. 5026–5031.
[10] T. M. Howard, C. J. Green, and A. Kelly, “Receding horizon model-

predictive control for mobile robot navigation of intricate paths,” in
Field and Service Robotics, ser. Springer Tracts in Advanced Robotics,
A. Howard, K. Iagnemma, and A. Kelly, Eds. Springer Berlin
Heidelberg, 2010, vol. 62, pp. 69–78.

[11] L. Bascetta, D. Cucci, G. Magnani, M. Matteucci, D. Osmankovic, and
A. Tahirovic, “Towards the implementation of a MPC-based planner
on an autonomous all-terrain vehicle,” in Workshop on Robot Motion

Planning: Online, Reactive, and in Real-time, The IEEE/RSJ Inter-

national Conference on Intelligent Robots and Systems, Vilamoura,

Portugal, 2012, pp. 7–12.
[12] T. Gorecki, H. Piet-Lahanier, J. Marzat, and M. Balesdent, “Coopera-

tive guidance of UAVs for area exploration with final target allocation,”
in Proceedings of the 19th IFAC Symposium on Automatic Control in

Aerospace, Würzburg, Germany, 2013, pp. 260–265.
[13] M. Sanfourche, V. Vittori, and G. L. Besnerais, “eVO: A realtime

embedded stereo odometry for mav applications,” in Proceedings of

the IEEE/RSJ International Conference on Intelligent Robots and

Systems, Tokyo, Japan, 2013, pp. 2107–2114.
[14] J. Shi and C. Tomasi, “Good features to track,” in Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition,

Jerusalem, Israel, 1994, pp. 593–600.
[15] E. Rosten and T. Drummond, “Machine learning for high-speed corner

detection,” in Proceedings of the European Conference on Computer

Vision, Graz, Austria, vol. 1, 2006, pp. 430–443.
[16] C. Mei, G. Sibley, M. Cummins, P. Newman, and I. Reid, “RSLAM:

A system for large-scale mapping in constant-time using stereo,”
International Journal of Computer Vision, vol. 94, no. 2, pp. 198–
214, 2011.

[17] M. A. Fischler and R. C. Bolles, “Random sample consensus: A
paradigm for model fitting with applications to image analysis and
automated cartography,” Communications of the ACM, vol. 24, no. 6,
pp. 381–395, 1981.

[18] S. Umeyama, “Least-squares estimation of transformation parameters
between two point patterns,” IEEE Transactions on Pattern Analysis

and Machine Intelligence, vol. 13, no. 4, pp. 376–380, 1991.
[19] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous

driving? the KITTI vision benchmark suite,” in Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, Prov-

idence, RI, USA, 2012, pp. 3354–3361.
[20] L. Teslić, I. Škrjanc, and G. Klančar, “EKF-based localization of

a wheeled mobile robot in structured environments,” Journal of

Intelligent & Robotic Systems, vol. 62, no. 2, pp. 187–203, 2011.
[21] A. Plyer, G. L. Besnerais, and F. Champagnat, “Real-time Lucas-

Kanade optical flow estimation for real-world applications,” Journal

of Real Time Image Processing, 2014.
[22] B. D. Lucas and T. Kanade, “An iterative image registration technique

with an application to stereo vision,” in Proceedings of the Seventh

International Joint Conference on Artificial Intelligence, Vancouver,

Canada, 1981, pp. 674–679.
[23] G. Le Besnerais and F. Champagnat, “Dense optical flow by iterative

local window registration,” in IEEE International Conference on Image

Processing 2005. IEEE, 2005, pp. I–137.
[24] J. Bouguet, “Pyramidal implementation of the affine lucas kanade

feature tracker description of the algorithm,” Technical report. Intel
Corporation, Tech. Rep., 2001.

[25] R. Zabih and J. Woodfill, “Non-parametric local transforms for com-
puting visual correspondence,” European Conference on Computer

Vision, pp. 151–158, 1994.
[26] R. B. Rusu and S. Cousins, “3D is here: Point Cloud Library (PCL),” in

IEEE International Conference on Robotics and Automation (ICRA),
Shanghai, China, May 9-13 2011, pp. 1–4.

[27] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Bur-
gard, “OctoMap: An efficient probabilistic 3D mapping framework
based on octrees,” Autonomous Robots, vol. 34, no. 3, pp. 189–206,
2013.

[28] L. Singh and J. Fuller, “Trajectory generation for a UAV in urban
terrain, using nonlinear MPC,” in Proceedings of the American Control
Conference, Arlington, VA, USA, vol. 3, 2001, pp. 2301–2308.

[29] A. Jadbabaie, J. Yu, and J. Hauser, “Unconstrained receding-horizon
control of nonlinear systems,” IEEE Transactions on Automatic Con-

trol, vol. 46, no. 5, pp. 776–783, 2001.
[30] Y. Rochefort, H. Piet-Lahanier, S. Bertrand, D. Beauvois, and D. Du-

mur, “Model predictive control of cooperative vehicles using system-
atic search approach,” Control Engineering Practice, 2014, in press.

[31] D. R. Jones, C. D. Perttunen, and B. E. Stuckman, “Lipschitzian
optimization without the Lipschitz constant,” Journal of Optimization

Theory and Applications, vol. 79, no. 1, pp. 157–181, 1993.

20

